Answer:
![(fg)(x) =8 \sqrt[6]{ (3 - x)^ {5 }}](https://tex.z-dn.net/?f=%28fg%29%28x%29%20%3D8%20%5Csqrt%5B6%5D%7B%20%283%20-%20x%29%5E%20%7B5%20%7D%7D%20)
![(\frac{f}{g} )(x) = \frac{1}{2} \sqrt[6]{3 - x}](https://tex.z-dn.net/?f=%28%5Cfrac%7Bf%7D%7Bg%7D%20%29%28x%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%5B6%5D%7B3%20-%20x%7D%20)


The domain of (fg)(x) is all real numbers
The domain of (f/g)(x) is x>3
Step-by-step explanation:
The given functions are

and
![g(x) = 4 \sqrt[3]{3 - x}](https://tex.z-dn.net/?f=g%28x%29%20%3D%204%20%5Csqrt%5B3%5D%7B3%20-%20x%7D%20)
We want to to evaluate:

![(fg)(x) =( 2 \sqrt{3 - x} )\times ( 4\sqrt[3]{3 - x} )](https://tex.z-dn.net/?f=%28fg%29%28x%29%20%3D%28%202%20%5Csqrt%7B3%20-%20x%7D%20%20%29%5Ctimes%20%28%204%5Csqrt%5B3%5D%7B3%20-%20x%7D%20%29)
We multiply to get:



![(fg)(x) =8 \sqrt[6]{ (3 - x)^ {5 }}](https://tex.z-dn.net/?f=%28fg%29%28x%29%20%3D8%20%5Csqrt%5B6%5D%7B%20%283%20-%20x%29%5E%20%7B5%20%7D%7D%20)
The domain of (fg)(x) is all real numbers.
Similarly;

![(\frac{f}{g} )(x) = \frac{2 \sqrt{3 - x} }{4 \sqrt[3]{3 - x} } = \frac{1}{2} \sqrt[6]{3 - x}](https://tex.z-dn.net/?f=%28%5Cfrac%7Bf%7D%7Bg%7D%20%29%28x%29%20%3D%20%20%5Cfrac%7B2%20%5Csqrt%7B3%20-%20x%7D%20%7D%7B4%20%5Csqrt%5B3%5D%7B3%20-%20x%7D%20%7D%20%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%5B6%5D%7B3%20-%20x%7D%20)
The domain is all real numbers greater than 3.
We need to evaluate (fg)(2) and (f/g)(2) to get:
![(fg)(2) =8 \sqrt[6]{ (3 - 2)^ {5 }} = 8 \sqrt[6]{ {1}^{5} } = 8](https://tex.z-dn.net/?f=%28fg%29%282%29%20%3D8%20%5Csqrt%5B6%5D%7B%20%283%20-%202%29%5E%20%7B5%20%7D%7D%20%20%3D%208%20%5Csqrt%5B6%5D%7B%20%7B1%7D%5E%7B5%7D%20%7D%20%20%3D%208)
![(\frac{f}{g} )(2) = \frac{1}{2} \sqrt[6]{3 - 2} = \frac{1}{2}](https://tex.z-dn.net/?f=%28%5Cfrac%7Bf%7D%7Bg%7D%20%29%282%29%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%20%5Csqrt%5B6%5D%7B3%20-%202%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20)
Just change 85 to .85 and multiply it by 146.54 and that should give you your answer man
On the right side of the equation, when the student combined like terms, 7x and -4x, they did not combine them correctly. Instead of combining them correctly, the student forgot to include the sign of the -4x which caused the sum of the two terms to be 11x instead of 3x. Hope this helps!
Answer:
Hence 4 different points are as
A(1,-4) ,B(2,-3) ,C(3,-2) D(4,-1)
Step-by-step explanation:
Given:
A line represents as x-y=5
To Find:
4 different points on that line with.
Solution:
Now calculate the points on both axes in order to draw the line .
So Put x=0 then y=-5
And when y= 0, x=5
Two points are (0,-5) and (5,0)
Hence draw line through this point and obtain the other two points by plotting on graph as follows:
(Refer the attachment)
Here the line is 4th quadrant so x will positive and y will negative
And addition of both should result in 5
1) Consider As x=1 then,
y=x-5=1-5=-4
y=-4
Point will be (1,-4)
2)consider As x=2 then
y=x-5=2-5=-3
y=-3
Point will be (2,-3)
3)Consider As x=3 then
y=x-5=3-5= -2
y=-2
Point will be (3,-2)
4) Consider AS x=4 then
y=x-5=4-5=-1
y=-1
Point will be (4,-1)
3/5 because the numerator is no the same as the others<span />