1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
We know: The sum of the measures of the angles of a triangle is equal 180°.
We have: m∠A =65°, m∠B = (3x - 10)° and m∠C = (2x)°.
The equation:
65 + (3x - 10) + 2x = 180
(3x + 2x) + (65 - 10) = 180
5x + 55 = 180 <em>subtract 55 from both sides</em>
5x = 125 <em>divide both sides by 5</em>
x = 25
m∠B = (3x - 10)° → m∠B = (3 · 25 - 10)° = (75 - 10)° = 65°
m∠C = (2x)° → m∠C = (2 · 25)° = 50°
<h3>Answer: x = 25, m∠B = 65°, m∠C = 50°</h3>
To find the answer we simply work out the equation.
cos (75) = 10/x
cos (75) * x = 10. Here, I simply multiplied both sides by x to move x to the left hand side of the equation.
x = 10 / cos (75) Here, I divided cos (75) on both sides to move cos (75) to the right hand side of the equation.
The cosine of 75 is 0.92175127, so, 10 / 0.92175127 = 10.8489137
Answer:
28.50+x or 28.50x
Step-by-step explanation:
6*4.75=28.50
6*x=6x or x
Answer:
perp-9xc
Step-by-step explanation:
1.
2. tiy have t