<span>As we know through the principle of conservation of energy, energy can neither be created nor destroyed. Therefore, the energy removed from the water in order to make it freeze is absorbed by the surroundings. This is why the surroundings in which freezing is taking place are below freezing. This is more easily illustrated in the example of condensation. If you were to hold a plate over a pot of boiling water, some of the water would give its energy to the plate and condense on its surface.</span>
ADD THEM all, and then divide by four. Thats what I would do!
<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the temperature at which the food will cook is 219.14°C
Molarity=moles/liter
molarity=43/0.64
molarity=67.19moles/litre
Answer:
Zn(NO₃)₂
Explanation:
this single replacement reaction will produce silver metal, Ag , and aqueous zinc nitrate, Zn(NO3)2 . Zinc is above silver is the metal reactivity series, so it will replace silver in silver nitrate