a.

By Fermat's little theorem, we have


5 and 7 are both prime, so
and
. By Euler's theorem, we get


Now we can use the Chinese remainder theorem to solve for
. Start with

- Taken mod 5, the second term vanishes and
. Multiply by the inverse of 4 mod 5 (4), then by 2.

- Taken mod 7, the first term vanishes and
. Multiply by the inverse of 2 mod 7 (4), then by 6.


b.

We have
, so by Euler's theorem,

Now, raising both sides of the original congruence to the power of 6 gives

Then multiplying both sides by
gives

so that
is the inverse of 25 mod 64. To find this inverse, solve for
in
. Using the Euclidean algorithm, we have
64 = 2*25 + 14
25 = 1*14 + 11
14 = 1*11 + 3
11 = 3*3 + 2
3 = 1*2 + 1
=> 1 = 9*64 - 23*25
so that
.
So we know

Squaring both sides of this gives

and multiplying both sides by
tells us

Use the Euclidean algorithm to solve for
.
64 = 3*17 + 13
17 = 1*13 + 4
13 = 3*4 + 1
=> 1 = 4*64 - 15*17
so that
, and so 
A. This is correct. When you transfer n to the other side, that would be the reciprocal power of a.
b. This is incorrect, because this contradicts with choice a.
c. This is correct. When a number is raised to a "1/n" fraction, that is equivalent to the nth root of the number.
d. This is incorrect, because it is not equivalent to the given equation.
<em>Thus, the answers are A and C.</em>
Answer:


Step-by-step explanation:
a.
![[\because \int \dfrac{dx}{x}=\log |x|+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cint%20%5Cdfrac%7Bdx%7D%7Bx%7D%3D%5Clog%20%7Cx%7C%2BC%5D)
b.
![[\because \int x^n dx=\dfrac{x^{n+1}}{n+1}+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cint%20x%5En%20dx%3D%5Cdfrac%7Bx%5E%7Bn%2B1%7D%7D%7Bn%2B1%7D%2BC%5D)
c.
![[\because \dfrac{adx}{x\sqrt{x^2-a^2}}=\csc^{-1}(\dfrac{x}{a})+C]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%5Cdfrac%7Badx%7D%7Bx%5Csqrt%7Bx%5E2-a%5E2%7D%7D%3D%5Ccsc%5E%7B-1%7D%28%5Cdfrac%7Bx%7D%7Ba%7D%29%2BC%5D)
6(x +y) -(a +b) = 6(-5) -(-5)
= -25
C is the answer because it is