Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
Answer:
Scientific Notation: 3.45 x 10^5
E Notation: 3.45e5
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
Answer: <em> a). Grip</em>
The grip is the important thing to be consider for golfer. It is the most fundamental important aspects to the game, because it provides the solid contact.
Applying the correct grip, results in better golf shots and an increased confidence to the golfer, to address the ball in the right direction.
Simply the grip is the pressure applied to the club with the hand such that the golfer feels comfortable to make a brilliant shot.