1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Travka [436]
2 years ago
7

U.S. soybeans average 39% protein. A bushel of soybeans weighs 60 lbs. How many pounds of protein are in a bushel? A 120-acre fi

eld yields 45 bu/acre. How many pounds of protein does that field yield?
Please answer Step-by-step, and do not give me links it doesn't work on my phone thanks.

DO NOT GIVE ME LINK. ​
Mathematics
1 answer:
Salsk061 [2.6K]2 years ago
7 0

Answer:

Step-by-step explanation:

You might be interested in
I need help finding the Answer to #1 and #2
kaheart [24]
#3 is even I really hope this works
3 0
3 years ago
Find each percent of change. Round to the nearest whole percent. State
taurus [48]

Answer:400

Step-by-step explanation:3704

4 0
2 years ago
Se tiene un rectángulo cuya base mide el doble que su altura y su área es 12
irina [24]

Answer:

Part 1) The perimeter is  P=6\sqrt{6}\ cm

Part 2) The diagonal is d=\sqrt{30}\ cm

Step-by-step explanation:

<u><em>The question in English is</em></u>

You have a rectangle whose base is twice the height and its area is 12

square centimeters. Calculate the perimeter of the rectangle and its diagonal

step 1

Find the dimensions of rectangle

we know that

The area of rectangle is equal to

A=bh

A=12\ cm^2

so

bh=12 ----> equation A

The base is twice the height

so

b=2h ----> equation B

substitute equation B in equation A

(2h)h=12\\2h^2=12\\h^2=6\\h=\sqrt{6}\ cm

Find the value of b

b=2\sqrt{6}\ cm

step 2

Find the perimeter of rectangle

The perimeter is given by

P=2(b+h)

substitute

P=2(2\sqrt{6}+\sqrt{6})\\P=6\sqrt{6}\ cm

step 3

Find the diagonal of rectangle

Applying the Pythagorean Theorem

d^2=b^2+h^2

substitute

d^2=(2\sqrt{6})^2+(\sqrt{6})^2

d^2=30

d=\sqrt{30}\ cm

3 0
3 years ago
Clara goes miniature golfing. She pays $7.50 for an admission ticket and $6.25 for each round she golfs. The total amount Clara
Nitella [24]

Answer:

26.25-7.50 = 18.75

18.75/6.25= 3

She golfed for 3 rounds

Step-by-step explanation:

5 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • Elevii clasei a IV-a se informeaza despre preturile unor obiecte:3 aparate foto de acelasi fel si un laptop costa 2700lei,iar 5
    15·1 answer
  • a waiter earns 8.75 per hour and works 36 hours per week and works 5 days per week. if he makes an average of $80 per shift in t
    13·1 answer
  • If the ratio is 8:7, how many boys and girls campers when there is a 195 campers
    5·1 answer
  • Solve for x.<br><br> 9x=3x−36<br><br> A −6<br> B −4<br> C 4<br> D 6
    11·2 answers
  • a plumber makes $40 to make a house call, plus $25 an hour for the actual work.write an equation to represent the situation
    13·1 answer
  • 3. Find the value of x and y.<br> (80-x)<br> ya<br> (3x +20)°<br> Help meeeee
    7·1 answer
  • Plz help ASAP TwT<br><br><br><br><br> What is the slope of the graph?
    14·2 answers
  • Ava and Kelly ran a road race, starting from the same place at the same time. Ava ran at an average speed of 6 miles per hour. K
    12·1 answer
  • HELP GEO QUESTION THX... GIVE ME EXPLANATION PLZZZZZ THXXXXX SOO MUCCHHHH
    10·1 answer
  • (f + g)(x) = (g + f )(x) is true for all functions. True or False?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!