Answer:
1 / f = 1 / o + 1 / i = (i + o) / o * 1
f = o * i / (o + i) = 60 * 30 / (60 + 30) = 1800 / 90 = 20 cm
Both the object and image are in positive space for a mirror
The answer is A because there’s so much heat in the core and pressure because of all of the layers of the earth
Answer:
0.89 g/cm^3 = 890 kg/m^3
Explanation:
Cross sectional area of U-tube ( A ) = 1.00 cm^2
volume of oil ( V ) = 5.00 cm^3
change between top surface = 0.550 cm
height of oil = 5 cm ( volume / area )
height of water = 5 - 0.550 = 4.45 cm
pressure at the oil-water junction = Pressure on the second side of the U-tube at same level
Po * g * Hoil = Pw * g * Hwater
Po * 5 = 1 * 4.45
∴ Density of oil ( Po ) = 4.45 / 5 g/cm^3 = 0.89 g/cm^3
I'm pretty sure there is only one element named after Mendeleev: <span>Mendelevium.</span>
The given question is incomplete. The complete question is as follows.
A box of oranges which weighs 83 N is being pushed across a horizontal floor. As it moves, it is slowing at a constant rate of 0.90 m/s each second. The push force has a horizontal component of 20 N and a vertical component of 25 N downward. Calculate the coefficient of kinetic friction between the box and the floor.
Explanation:
The given data is as follows.
= 20 N,
= 25 N, a = -0.9
W = 83 N
m = 
= 8.46
Now, we will balance the forces along the y-component as follows.
N = W +
= 83 + 25 = 108 N
Now, balancing the forces along the x component as follows.
= ma
= 7.614 N
Also, we know that relation between force and coefficient of friction is as follows.

= 
= 0.0705
Thus, we can conclude that the coefficient of kinetic friction between the box and the floor is 0.0705.