Sorry I didn't see this before...
Okay, I see two major problems with this student's experiment:
1) Nitric acid Won't Dissolve in Methane
Nitric acid is what's called a mineral acid. That means it is inorganic (it doesn't contain carbon) and dissolves in water.
Methane is an organic molecule (it contains carbon). It literally cannot dissolve nitric acid. Here's why:
For nitric acid (HNO3) to dissolve into a solvent, that solvent must be polar. It must have a charge to pull the positively charged Hydrogen off of the Oxygen. Methane has no charge, since its carbon and hydrogens have nearly perfect covalent bonds. Thus it cannot dissolve nitric acid. There will be no solution. That leads to the next problem:
2) He's Not actually Measuring a Solution
He's picking up the pH of the pure nitric acid. Since it didn't dissolve, what's left isn't a solution—it's like mixing oil and water. He has groups of methane and groups of nitric acid. Since methane is perfectly neutral (neither acid nor base), the electronic instrument is only picking up the extremely acidic nitric acid. There's no point to what he's doing.
Does that help?
What is the question? I think that you answered it yourself...
Complete question:
Resistor is made of a very thin metal wire that is 3.2 mm long, with a diameter of 0.4 mm. What is the electric field inside this metal resistor? If the potential difference due to electric field between the two ends of the resistor is 10 V.
Answer:
The electric field inside this metal resistor is 3125 V/m
Explanation:
Given;
length of the wire, L = 3.2 mm = 3.2 x 10⁻³ m
diameter of the wire, d = 0.4 mm = 0.4 x 10⁻³ m
the potential difference due to electric field between the two ends of the resistor, V = 10 V
The electric field inside this metal resistor is given by;
ΔV = EL
where;
ΔV is change in electric potential
E = ΔV / L
E = 10 / (3.2 x 10⁻³ )
E = 3125 V/m
Therefore, the electric field inside this metal resistor is 3125 V/m
Answer:
θ = 36.2º
Explanation:
When light passes through a polarizer it becomes polarized and if it then passes through a second polarizer, it must comply with Malus's law
I = I₀ cos² tea
The non-polarized light between the first polarized of this leaves half the intensity, with vertical polarization
I₁ = I₀ / 2
I₁ = 845/2
I₁ = 422.5 W / m²
In this case, the incident light in the second polarizer has an intensity of I₁ = 422.5 W / m² and the light that passes through the polarizer has a value of
I = 275 W / m
²
Cos² θ = I / I₁
Cos θ = √ I / I₁
Cos θ = √ (275 / 422.5)
Cos θ = 0.80678
θ = cos⁻¹ 0.80678
θ = 36.2º
This is the angle between the two polarizers