Expand the left side using the angle sum identity for sine:
sin(<em>x</em> + <em>π</em>/2) = sin(<em>x</em>) cos(<em>π</em>/2) + cos(<em>x</em>) sin(<em>π</em>/2)
cos(<em>π</em>/2) = 0 and sin(<em>π</em>/2) = 1, so the right side reduces to
sin(<em>x</em> + <em>π</em>/2) = cos(<em>x</em>)
as required.
Answer:
The factorized form of the given expression is ![4 [(a-1)^2 - b(a - 1 + \frac{b}{4})]](https://tex.z-dn.net/?f=4%20%5B%28a-1%29%5E2%20-%20b%28a%20-%201%20%2B%20%5Cfrac%7Bb%7D%7B4%7D%29%5D)
Step-by-step explanation:
Given;
4a² + b² - 4ab - 8a + 4b + 4
This expression is factorized as follows;
(4a² - 8a + 4) + (b² - 4ab + 4b)
(4a² - 4a - 4a + 4) + b² - 4b(a - 1)
(4a - 4)(a - 1) + b² - 4b(a - 1)
(4a - 4)(a - 1) - 4b(a - 1) + b²
4(a - 1)(a - 1) - 4b(a - 1) + b²
4(a - 1)² - 4b(a - 1 + b/4)
![4(a- 1)^2 - 4b(a - 1 + \frac{b}{4} )\\\\4 [(a-1)^2 - b(a - 1 + \frac{b}{4})]](https://tex.z-dn.net/?f=4%28a-%201%29%5E2%20-%204b%28a%20-%201%20%2B%20%5Cfrac%7Bb%7D%7B4%7D%20%29%5C%5C%5C%5C4%20%5B%28a-1%29%5E2%20-%20b%28a%20-%201%20%2B%20%5Cfrac%7Bb%7D%7B4%7D%29%5D)
Answer:
12
Step-by-step explanation:
The answer in simplest for would be 7/8. What you basically do is multiply 7/10 by the reciprocal of 4/5 and that gives u the answer.