Answer: Choice B) {3, 5, sqrt(34)}
=====================================
Explanation:
We can only have a right triangle if and only if a^2+b^2 = c^2 is a true equation. The 'c' is the longest side, aka hypotenuse. The legs 'a' and 'b' can be in any order you want.
-----------
For choice A,
a = 2
b = 3
c = sqrt(10)
So,
a^2+b^2 = 2^2+3^2 = 4+9 = 13
but
c^2 = (sqrt(10))^2 = 10
which is not equal to 13 from above. Cross choice A off the list.
-----------
Checking choice B
a = 3
b = 5
c = sqrt(34)
Square each equation
a^2 = 3^2 = 9
b^2 = 5^2 = 25
c^2 = (sqrt(34))^2 = 34
We can see that
a^2+b^2 = 9+25 = 34
which is exactly equal to c^2 above. This confirms the answer.
-----------
Let's check choice C
a = 5, b = 8, c = 12
a^2 = 25, b^2 = 64, c^2 = 144
So,
a^2+b^2 = c^2
25+64 = 144
89 = 144
which is a false equation allowing us to cross choice C off the list.
44 inches.
All you have to do is find out what 10% of 40 is then add it back to 40. In the case of finding 10% of something you just “chop” of the back number (or move the decimal place forward) so 10% of 40 is 4. The. 40+4=44.
You can also multiply fractions to find the percent of a number but that is not necessary in this case.
Answer:
The answer in the procedure
Step-by-step explanation:
we know that
The rule of the reflection of a point over the y-axis is equal to
A(x,y) ----->A'(-x,y)
That means -----> The x-coordinate of the image is equal to the x-coordinate of the pre-image multiplied by -1 and the y-coordinate of both points (pre-image and image) is the same
so
A(3,-1) ------> A'(-3,-1)
The distance from A to the y-axis is equal to the distance from A' to the y-axis (is equidistant)
therefore
To reflect a point over the y-axis
Construct a line from A perpendicular to the y-axis, determine the distance from A to the y-axis along this perpendicular line, find a new point on the other side of the y-axis that is equidistant from the y-axis
59 is a "prime number". It has no factors except ' 1 ' and itself.
So the only possibility is 1 x 59 .