Given:
The graph of a radical function.
To find:
The domain of the given radical function.
Solution:
We know that, domain is the set of input values or we can say domain is the set of x-values for which the function is defined.
From the given graph it is clear that, for each value of x there is a y-value. It means the function is defined for all real values of x. So,
Domain = Set of all real numbers.
Therefore, the correct option is A.
Answer:
x = -0.6
y = 2.2
z = 2
Step-by-step explanation:
2x + y - 2z = -3
x + 3y - z = 4
3x + 4y - z = 5
Rewrite the system in matrix form and solve it by Gaussian Elimination (Gauss-Jordan elimination)
2 1 -2 -3
1 3 -1 4
3 4 -1 5
R1 / 2 → R1 (divide the 1 row by 2)
1 0.5 -1 -1.5
1 3 -1 4
3 4 -1 5
R2 - 1 R1 → R2 (multiply 1 row by 1 and subtract it from 2 row); R3 - 3 R1 → R3 (multiply 1 row by 3 and subtract it from 3 row)
1 0.5 -1 -1.5
0 2.5 0 5.5
0 2.5 2 9.5
R2 / 2.5 → R2 (divide the 2 row by 2.5)
1 0.5 -1 -1.5
0 1 0 2.2
0 2.5 2 9.5
R1 - 0.5 R2 → R1 (multiply 2 row by 0.5 and subtract it from 1 row); R3 - 2.5 R2 → R3 (multiply 2 row by 2.5 and subtract it from 3 row)
1 0 -1 -2.6
0 1 0 2.2
0 0 2 4
R3 / 2 → R3 (divide the 3 row by 2)
1 0 -1 -2.6
0 1 0 2.2
0 0 1 2
R1 + 1 R3 → R1 (multiply 3 row by 1 and add it to 1 row)
1 0 0 -0.6
0 1 0 2.2
0 0 1 2
x = -0.6
y = 2.2
z = 2
My answer -
3 2/3
Wow you have allot of cats LOL!!!
P.S
Have an AWESOME LGBT DAY !!! :)
6b-18c+18x is simplified for you