Answer:
V(x,y,z) ≈ 61.2 in
Step-by-step explanation:
for the function f
f(X)=x³
then the volume will be
V(x,y,z)= f(X+h) - f(X) , where h= 0.2 (thickness)
doing a Taylor series approximation to f(x+h) from f(x)
f(X+h) - f(X) = ∑fⁿ(X)*(X-h)ⁿ/n!
that can be approximated through the first term and second
f(X+h) - f(X) ≈ f'(x)*(-h)+f''(x)*(-h)²/2 = 3*x²*(-h)+6*x*(-h)²/2
since x=L=10 in (cube)
f(X+h) - f(X) ≈ 3*x²*(-h)+6*x*(-h)²/2 = 3*L²*h+6*L*h²/2 = 3*L*h*(h+L)
then
f(X+h) - f(X) ≈ 3*L*h*(h+L) = 3* 10 in * 0.2 in * ( 0.2 in + 10 in ) = 61.2 in
then
V(x,y,z) ≈ 61.2 in
V real = (10.2 in)³-(10 in)³ = 61 in
Answer:
Number 2 is 32
Step-by-step explanation:
advanced calculator!
Hope it helps
Standard deviation I'd say
The third one 'every type performs the same function' is not true.
Skin cells operate differently compared to brain cells, plants cells and animal cells are hugely different, etc. Cells are specialised to achieve a certain purpose and function in living things.