M1U1 + M2V2 = (M1+M2)V, where M1 is the mass of the moving car, M2 is the mass of the stationary car, U1 is the initial velocity, and V is the common velocity after collision.
therefore;
(1060× 16) + (1830 ×0) = (1060 +1830) V
16960 = 2890 V
V = 5.869 m/s
The velocity of the cars after collision will be 5.689 m/s
Answer:
2.96 × 10^4 N
Explanation:
1 atm = 101325 N/m², pressure inside the airtight room = 1.02 atm, pressure outside due to hurricane = 0.91 atm
net pressure directed outward = P inside - P outside
net pressure = 1.02 - 0.91 = 0.11 atm
where 1 atm = 101325N/m²
0.11 atm = 0.11 × 101325 N/m² = 11145.75 N/m²
area of the square wall = l × l where l is the length of the wall in meters = 1.63 × 1.63 = 2.6569
net pressure = net force / area
make net force subject of the formula
net force = net pressure × area = 11145.75 × 2.6569 = 2.96 × 10 ^4 N
Answer:
b) lattice energy
Explanation:
A solution is said to have colligative property when the property depends on the solute present in the solution.
Colligative property depend upon on the solute particle or the ion concentration not on the identity of solute.
osmotic pressure, vapor pressure lowering , boiling point elevation and freezing point lowering all depend upon solute concentration so they will not have colligative property so, the answer remains option 'b' which is lattice energy.
Answer:
The elastic potential energy of the spring change during this process is 21.6 J.
Explanation:
Given that,
Spring constant of the spring, 
It extends 6 cm away from its equilibrium position.
We need to find the elastic potential energy of the spring change during this process. The elastic potential energy of the spring is given by the formula as follows :

So, the elastic potential energy of the spring change during this process is 21.6 J.