Answer:
The launching point is at a distance D = 962.2m and H = 39.2m
Explanation:
It would have been easier with the drawing. This problem is a projectile launching exercise, as they give us data after the window passes and the wall collides, let's calculate with this data the speeds at the point of contact with the window.
X axis
x = Vox t
t = x / vox
t = 7.1 / 340
t = 2.09 10-2 s
In this same time the height of the window fell
Y = Voy t - ½ g t²
Let's calculate the initial vertical speed, this speed is in the window
Voy = (Y + ½ g t²) / t
Voy = [0.6 + ½ 9.8 (2.09 10⁻²)²] /2.09 10⁻² = 0.579 / 0.0209
Voy = 27.7 m / s
We already have the speed at the point of contact with the window. Now let's calculate the distance (D) and height (H) to the launch point, for this we calculate the time it takes to get from the launch point to the window; at this point the vertical speed is Vy2 = 27.7 m / s
Vy = Voy - gt₂
Vy = 0 -g t₂
t₂ = Vy / g
t₂ = 27.7 / 9.8
t₂ = 2.83 s
This is the time it also takes to travel the horizontal and vertical distance
X = Vox t₂
D = 340 2.83
D = 962.2 m
Y = Voy₂– ½ g t₂²
Y = 0 - ½ g t2
H = Y = - ½ 9.8 2.83 2
H = 39.2 m
The launching point is at a distance D = 962.2m and H = 39.2m
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete
To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

k = Coulomb's constant
q = Charge
r = Distance between them


Replacing,



Therefore the potential at the surface of the raindrop is 135 V
Is it science ? cause the word blocks you just need to see which matches up with each word and make its way down
A mix
Explanation:
A battery is an electrochemical cell that converts chemical energy into electrical energy. The chemical reactions in a battery ensures that current is produced.
- A battery is made up of two electrodes which are the cathode and anode.
- The cathode is the positive electrode and the anode is the negative one.
- These electrodes are made up of metals.
- Electrons moves from the anode to the cathode and current flows from cathode to anode.
- At the anode oxidation occurs because electrons are produced here.
- It needs to have low electron affinity.
- At the cathode where reduction occurs, the electron affinity must be high.
- This is the driving force for the production of electricity in electrochemical cells.
Learn more:
Battery brainly.com/question/8892837
#learnwithBrainly