Energy is required to change the phase of a substance, such as the energy to break the bonds between molecules in a block of ice so it may melt.
During a phase change energy my be added or subtracted from a system, but the temperature will not change. The temperature will change only when the phase change has completed. No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings. Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart so that the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature.
From what i can gather it looks like d
ANSWER:
4 a) Specific elements have more than one oxidation state, demonstrating variable valency.
For example, the following transition metals demonstrate varied valence states:
,
,
, etc.
Normal metals such as
also show variable valencies. Certain non-metals are also found to show more than one valence state 
4 b) Isotopes are members of a family of an element that all have the same number of protons but different numbers of neutrons.
For example, Carbon-14 is a naturally occurring radioactive isotope of carbon, having six protons and eight neutrons in the nucleus. However, C-14 does not last forever and there will come a time when it loses its extra neutrons and becomes Carbon-12.
5 a)
→
5 b)
→ 
5 c)
→
(already balanced so don't need to change)
5 d)
→
5 e)
→ 
EXPLANATION (IF NEEDED):
1. Write out how many atoms of each element is on the left (reactant side) and right (product side) of the arrow.
2. Start multiplying each side accordingly to try to get atoms of the elements on both sides equal.
EXAMPLE OF BALANCING:
That is actually physics because it talks about motion.
Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.