After 1911 most scientists accepted<span> the </span>theory<span> that the </span>nucleus<span> of an </span>atom<span> was </span>very dense<span> and </span>very small<span> and </span>has<span> a </span>positive charge<span>. </span>
Although it is omitted, the reaction equation for the decomposition of phosphorus pentachloride is:
PCl₅ → PCl₃ + Cl₂
The equilibrium constant's equation then becomes:
Kc = [PCl₃]*[Cl₂] / [PCl₅]
Kc = (0.02 * 0.02) / 0.0095
Kc = 0.042
The equilibrium constant is 0.042.
1. 5 ethyl, 2 methyl octane
2. 1 ethyl, 2 methyl cyclopentane
3. 3,3,5,5- tetrafluoro heptane
4. 3,4-dimethyl hexene
5. 3,4-dimethyl cyclobutene
6. 3,5 diisopropyl cyclohexene
7. 3,3,4 trimethyl pentyne
8. 2,6 dibromo phenol
keep in mind that between 4-7, there could be #1 in front of the main name. for example with #4: 3,4-dimethyl-1- hexene. this honestly depends on the professor how he/she likes it. It is not necessary because if the number is not specified, it is assumed is #1
Answer:
<h2>2.49 g/cm³</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>2.49 g/cm³</h3>
Hope this helps you
Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL