<span>ds=<span>√<span>1+<span><span>(<span><span>dy</span><span>dx</span></span>)</span>2</span></span></span><span>dx</span>=<span>√<span>1+<span>14</span><span>(<span>x4</span>−2+<span>1<span>x4</span></span>)</span></span></span><span>dx</span></span>
<span>=<span>√<span><span>14</span><span>(<span>x4</span>+2+<span>1<span>x4</span></span>)</span></span></span><span>dx</span>=<span>√<span><span>1<span>22</span></span><span><span>(<span>x2</span>+<span>1<span>x2</span></span>)</span>2</span></span></span><span>dx</span></span>
<span>=<span>12</span><span>(<span>x2</span>+<span>1<span>x2</span></span>)</span><span>d<span>x</span></span></span>
If you have a graph, I’d use it and make curved lines going down to plot the points!
Using -17 ,15
And, 15 , -13
Hope this helps!
the awnser is -6
im very sure let me know if im wrong.
V= pi * r^2 * h
471 = 3.14 * r^2 *6
471 = 18.84 * r^2
25 = r^2
Sqrt25 = r
5 = r
D= 2*5
D= 10in
What does the central limit theorem tell us about the
distribution of those mean ages?
<span>A. </span>Because n>30, the sampling
dist of the mean ages can be approximated by a normal dist with a mean u and a
SD o/sqrt 54,
Whenever n<span>>30 the central limit theory applies.</span>