The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Step-by-step explanation:
Assume that adults have IQ scores that are normally distributed with a mean of mu equals μ = 105 and a standard deviation sigma equals σ = 15
We need to find the probability that a randomly selected adult has an IQ less than 135
For the probability that X < b;
- Convert b into a z-score using z = (X - μ)/σ, where μ is the mean and σ is the standard deviation
- Use the normal distribution table of z to find the area to the left of the z-value ⇒ P(X < b)
∵ z = (X - μ)/σ
∵ μ = 105 , σ = 15 and X = 135
∴ 
- Use z-table to find the area corresponding to z-score of 2
∵ The area to the left of z-score of 2 = 0.97725
∴ P(X < 136) = 0.97725
The probability that a randomly selected adult has an IQ less than
135 is 0.97725
Learn more:
You can learn more about probability in brainly.com/question/4625002
#LearnwithBrainly
Answer:
the ratio is 12:16=3/4
So AE:5+AE=3/4
4AE=15+3AE
AE=15
Step-by-step explanation:
a) Proof by contradiction is different from traditional proof as it accepts a single example showing that a statement is false, instead of having the need to derive a general relationship for all input values.
b) The statement is true by contradiction as the sum of the measures is of 160º, and not 180º.
<h3>What are supplementary angles?</h3>
Two angles are called supplementary angles if the sum of their measures has a value of 180º.
The measures of the angles in this problem are given as follows:
Then the sum of the measures of this angles is given as follows:
90 + 70 = 160º.
Which is a different sum of 160º, confirming the statement that the angles are not supplementary by contradiction.
A similar problem, involving proof by contradiction and supplementary angles, is presented at brainly.com/question/28889480
#SPJ1
Answer:
domain={-5,-3,0,2}
range={0,2,4,7}
Step-by-step explanation:
yes