Answer:
0.1587
Step-by-step explanation:
Let X be the commuting time for the student. We know that
. Then, the normal probability density function for the random variable X is given by
. We are seeking the probability P(X>35) because the student leaves home at 8:25 A.M., we want to know the probability that the student will arrive at the college campus later than 9 A.M. and between 8:25 A.M. and 9 A.M. there are 35 minutes of difference. So,
= 0.1587
To find this probability you can use either a table from a book or a programming language. We have used the R statistical programming language an the instruction pnorm(35, mean = 30, sd = 5, lower.tail = F)
Let

Differentiating twice gives


When x = 0, we observe that y(0) = a₀ and y'(0) = a₁ can act as initial conditions.
Substitute these into the given differential equation:


Then the coefficients in the power series solution are governed by the recurrence relation,

Since the n-th coefficient depends on the (n - 2)-th coefficient, we split n into two cases.
• If n is even, then n = 2k for some integer k ≥ 0. Then




It should be easy enough to see that

• If n is odd, then n = 2k + 1 for some k ≥ 0. Then




so that

So, the overall series solution is


Answer:
Step-by-step explanation:
Slope of (-4,7),(-7,-15) is 22/3
Slope of the function is 2/11
Answer: 
Step-by-step explanation:
Given
The temperature on Tuesday is 
Temperature drops to
on Wednesday
Net drop in temperature 
The temperature drops twice from Wednesday to Thursday

Temperature on Thursday
