Answer:
(1) I shifts toward product and II shifts toward reactant.
Explanation:
Increasing the temperature of an endothermic reaction (∆H is positive) shifts the equilibrium position to the right thus favoring product formation.
Increasing the temperature of an exothermic reaction (∆H is negative) shifts the equilibrium position to the left thus favoring the backward reaction.
Answer:
Fluorometric emission scanning.
Explanation:
Fluorometric emission scanning is used to detect the presence of porphyrins. There are various types of porphyrins and they can be tested in a lab with either, urine or blood sample testing.
Answer:
108.43 grams KNO₃
Explanation:
To solve this problem we use the formula:
Where
- ΔT is the temperature difference (14.5 K)
- Kf is the cryoscopic constant (1.86 K·m⁻¹)
- b is the molality of the solution (moles KNO₃ per kg of water)
- and<em> i</em> is the van't Hoff factor (2 for KNO₃)
We <u>solve for b</u>:
- 14.5 K = 1.86 K·m⁻¹ * b * 2
Using the given volume of water and its density (aprx. 1 g/mL) we <u>calculate the necessary moles of KNO₃</u>:
- 275 mL water ≅ 275 g water
- moles KNO₃ = molality * kg water = 3.90 * 0.275
- moles KNO₃ = 1.0725 moles KNO₃
Finally we <u>convert KNO₃ moles to grams</u>, using its molecular weight:
- 1.0725 moles KNO₃ * 101.103 g/mol = 108.43 grams KNO₃
1. 12.992 L
2. 2.42 moles
3. 275.52 L
4. 567.844 g
<h3>Further explanation</h3>
Given
moles and volume at STP
Required
mass, volume and moles
Solution
Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). At STP, Vm is 22.4 liters / mol.
1. 0.58 moles ammonia :
Volume = 0.58 moles x 22.4 L = 12.992 L
2. 77.5 grams of O₂ :
Moles = 77.5 grams x (1 mol/32 grams) = 2.42
3. 12.3 mole of Bromine gas :
Volume = 12.3 mole x (22.4 L/1 mole) = 275.52 L
4. 4.8 moles iron(II)chloride :
Mass = 4.48 moles x molar mass ( 126,751 g/mol) = 567.844 g
Answer:
In talc preparation, it is used during the filtration process and also acts as a distribution agent. When it is added to the dill water, it combines with all other compounds present in the substance and leaves the water alone. In this way, it acts as a filtering agent.
Explanation:
it has already been answered