Answer:
- continental drift
Explanation:
because they joined to be <em>call pangea</em> and due to the <em><u>drifting of the continents</u></em> they separated
Explanation:
Formula for energy value is as follows.
E = 
where,
= 13.6
n = number of shell
So, at ground state energy of hydrogen atom will be as follows.
E = 
= 
= -13.6
Hence, for an ionized atom value of energy will be as follows.
E' = 
or, E' = 
Thus, we can conclude that total energy of the remaining electron in the ionized atom is
.
<h3>
Answer:</h3>
43.33 atm
<h3>
Explanation:</h3>
We are given;
Mass of C₆H₆ = 26.2 g
Volume of the container = 0.25 L
Temperature = 395 K
We are required to calculate the pressure inside the container;
First, we calculate the number of moles of C₆H₆
Molar mass of C₆H₆ = 78.1118 g/mol.
But; Moles = mass ÷ Molar mass
Moles of C₆H₆ = 26.2 g ÷ 78.1118 g/mol.
= 0.335 moles C₆H₆
Second, we calculate the pressure, using the ideal gas equation;
Using the ideal gas equation, PV = nRT , Where R is the ideal gas constant, 0.082057 L.atm/mol.K
Therefore;
P = nRT ÷ V
= (0.335 mol × 0.082057 × 395 K) ÷ 0.25 L
= 43.433 atm
Therefore, the pressure inside the container is 43.33 atm
Answer:
The glowing splint test is a test for an oxidizing gas, such as oxygen. In this test, a splint is lit, allowed to burn for a few seconds, then blown out by mouth or by shaking. Whilst the ember at the tip is still glowing hot, the splint is introduced to the gas sample that has been trapped in a vessel. Oxygen supports combustion so a good method of testing for oxygen is to take a glowing splint and place it in a sample of gas, if it re-ignites the gas is oxygen. This is a simple but effective test for oxygen.