Answer:
The sampling distribution of the sample mean of size 30 will be approximately normal with mean 15 and standard deviation 2.19.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean
and standard deviation
, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
and standard deviation
.
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For the population, we have that:
Mean = 15
Standard deviaiton = 12
Sample of 30
By the Central Limit Theorem
Mean 15
Standard deviation 
Approximately normal
The sampling distribution of the sample mean of size 30 will be approximately normal with mean 15 and standard deviation 2.19.
The greatest common factor is 3abc
Answer:
A) the value of the car will be 13,333.34 after 3 years ( not sure )
B) the depreciation of the car will be 2222.22 per year ( not sure)
C) i do not know
For this case we have that the main function is given by:

We apply the following transformations:
Vertical expansions:
To graph y = a * f (x)
If a> 1, the graph of y = f (x) is expanded vertically by a factor a.
For a = 5 we have:

Vertical translations:
Suppose that k> 0
To graph y = f (x) + k, move the graph of k units up.
For k = 5 we have:

Answer:
The graph of g (x) is the graph of f (x) stretched vertically by a factor of 5 and translated up 5 units.
Answer:
a) 19/15 b) 1/3
Step-by-step explanation:
in both the question I reduced the numbers with 5