Answer: 2w
Step-by-step explanation:
The greatest common factor could also be referred to as the Highest common factor. Now
60w, 34w² and 24w⁴
Now let concert each to its factors
60 = 2 × 2 × 3 × 5 × w
34w² = 2 × 17 × w × w
24w⁴ = 2 × 2 × 2 × 3 × w × w × w × w
Therefore H.C.F or the greatest common factor
G.C.F = 2 × w
= 2w
GCF or GCM? I’m not sure if you typed it in wrong or not. I’m just making sure
To find the original amount, you divide the product by the percentage.
112.79 / 0.15 ≈ 751.933 (the 3's repeat infinitely).
To check your answer, multiply 751.933 by 0.15.
751.933 * 0.15 = 112.78995 ≈ 112.79
we'll start off by grouping some

so we have a missing guy at the end in order to get the a perfect square trinomial from that group, hmmm, what is it anyway?
well, let's recall that a perfect square trinomial is

so we know that the middle term in the trinomial, is really 2 times the other two without the exponent, well, in our case, the middle term is just "x", well is really -x, but we'll add the minus later, we only use the positive coefficient and variable, so we'll use "x" to find the last term.

so, there's our fellow, however, let's recall that all we're doing is borrowing from our very good friend Mr Zero, 0, so if we add (1/2)², we also have to subtract (1/2)²
![\bf \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2-\left[ \cfrac{1}{2} \right]^2 \right)=6\implies \left( x^2 -x +\left[ \cfrac{1}{2} \right]^2 \right)-\left[ \cfrac{1}{2} \right]^2=6 \\\\\\ \left(x-\cfrac{1}{2} \right)^2=6+\cfrac{1}{4}\implies \left(x-\cfrac{1}{2} \right)^2=\cfrac{25}{4}\implies x-\cfrac{1}{2}=\sqrt{\cfrac{25}{4}} \\\\\\ x-\cfrac{1}{2}=\cfrac{\sqrt{25}}{\sqrt{4}}\implies x-\cfrac{1}{2}=\cfrac{5}{2}\implies x=\cfrac{5}{2}+\cfrac{1}{2}\implies x=\cfrac{6}{2}\implies \boxed{x=3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29%3D6%5Cimplies%20%5Cleft%28%20x%5E2%20-x%20%2B%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%20%5Cright%29-%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%5D%5E2%3D6%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D6%2B%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%3D%5Ccfrac%7B25%7D%7B4%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Csqrt%7B%5Ccfrac%7B25%7D%7B4%7D%7D%20%5C%5C%5C%5C%5C%5C%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B%5Csqrt%7B25%7D%7D%7B%5Csqrt%7B4%7D%7D%5Cimplies%20x-%5Ccfrac%7B1%7D%7B2%7D%3D%5Ccfrac%7B5%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B5%7D%7B2%7D%2B%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20x%3D%5Ccfrac%7B6%7D%7B2%7D%5Cimplies%20%5Cboxed%7Bx%3D3%7D)
Answer:
71
Step-by-step explanation:
This is the answer because:
1) First, add Andy's score and Janet's score in order to know how much they got in total:
- Janet's score: 119 + 96 + 145 = 360
- Andy's score: 127 + 74 + 88 = 289
2) In order to find how much more Janet scored, jus subtract Andy's score from Janet's score:
Therefore, the answer is 71.
Hope this helps! :)