Answer:
F = 2 I A / c
Explanation:
The radiation pressure on a reflective surface is
P = 2 S / c
Where S is the Poynting Vector and c the speed of light
Furthermore pressure is defined as the ratio of force to area
P = F / A
Let's replace
F / A = 2 S / c
F = 2 S A / c
The poynting vector is the power per unit area that is equal to the intensity
S = I
F = 2 I A / c
Answer:
A) 667 J
B) 381.4 J
C) 0 J
D) 245.4 J
E) 40.2J
F) 2 m/s
Explanation:
Let g = 9.81 m/s2
A) The work done on the suitcase is the product of the force applied and the distance travelled:
w = Fs = 145 * 4.6 = 667 J
B) The work done by gravitational force the dot product between the gravity vector and the distance vector
C) As the normal force vector is perpendicular to the distance vector, the work done by the normal force is 0
D) The work done on the suitcase by friction force is the product of the force applied and the distance travelled, whereas friction force is the product of normal force and coefficient
E) The total workdone on the suite case would be the pulling work subtracted by gravity work and friction work
F) As the suit case has 0 kinetic and potential energy at the bottom, and the total work done is converted to kinetic energy at 4.6 m along the ramp, we can conclude that:
Answer:
a)39ml
b)39g
c)1.1g/ml
Explanation:
Hello!
To solve this exercise use the following steps
1. When Archimedes discovered how to determine the irregular volume of an object by weighing it in the air and in an algua, he found that its volume is equal to the ratio between the differences of the masses (heavy in the air and in the water) and the density of the water (= 1g / ml)

2.as the principle of archimedes says, the displaced volume of water is equal to the volume of the bone which means that 39.4ml of water was displaced, taking into account that the density of water is the ratio between mass and volume we can determine the displaced body of water

3.
we use the density equation to find the bone density

Answer:
Landed before it explodes
Explanation:
vf = vi + at,
0 = 145 - (9.8)t,
t = 14.79 s (Time to reach highest point)
14.79 x 2 = 29.59 s (Time to land on the ground)
It will have landed before it explodes because both the time to reach the highest point and the time to land on the ground are less than 32 seconds.
Answer:
c
Explanation:
neither the spring or hands are in the action of movemnet