9514 1404 393
Answer:
- maximum: 15∛5 ≈ 25.6496392002
- minimum: 0
Step-by-step explanation:
The minimum will be found at the ends of the interval, where f(t) = 0.
The maximum is found in the middle of the interval, where f'(t) = 0.
![f(t)=\sqrt[3]{t}(20-t)\\\\f'(t)=\dfrac{20-t}{3\sqrt[3]{t^2}}-\sqrt[3]{t}=\sqrt[3]{t}\left(\dfrac{4(5-t)}{3t}\right)](https://tex.z-dn.net/?f=f%28t%29%3D%5Csqrt%5B3%5D%7Bt%7D%2820-t%29%5C%5C%5C%5Cf%27%28t%29%3D%5Cdfrac%7B20-t%7D%7B3%5Csqrt%5B3%5D%7Bt%5E2%7D%7D-%5Csqrt%5B3%5D%7Bt%7D%3D%5Csqrt%5B3%5D%7Bt%7D%5Cleft%28%5Cdfrac%7B4%285-t%29%7D%7B3t%7D%5Cright%29)
This derivative is zero when the numerator is zero, at t=5. The function is a maximum at that point. The value there is ...
f(5) = (∛5)(20-5) = 15∛5
The absolute maximum on the interval is 15∛5 at t=5.
Answer:
-2 hope this helps! :)
Step-by-step explanation:
-10 over 5 is -2
so a = -2
i think the answer is c :)
Explaining- when you look at the vertex to the other vertex you see the length and that is when you multiply
Answer- A
Answer: 7.5
Step-by-step explanation: -2/5= -0.4 so -3/-0.4=7.5