To form a triangle the sum of the two shorter sides must be greater than the longest side.
5, 5, 3 forms a triangle (isosceles)
8, 8, 8 forms a triangle (equilateral)
5, 6, 10 forms a triangle (obtuse angled scalene)
7, 8, 15 technically forms a triangle with an area of zero units. The vertices would be co-linear.
This will often be ignored as it has little practical use.
Fun fact. If you break a stick into 3 random lengths there is only a 25% chance they will be able to form a triangle.
Answer: 3,988.8
Usaremos la fómula: I = C * i * n
I = 72 000 * 0.05 * (1 año + 1 mes + 10 día)
I = 72 000 * 0.05 * (1 + 0.08 + 0.0028)
I = 72 000 * 0.05 * 1.108
3,988.8
Step-by-step explanation:
Podemos obtener el interés que produce un capital con la siguiente fórmula:
I = C * i * n
Ejemplo: Si queremos calcular el interés simple que produce un capital de 1.000.000 pesos invertido durante 5 años a una tasa del 8% anual. El interés simple se calculará de la siguiente forma:
I = 1.000.000 * 0,08 * 5 = 400.000
Si queremos calcular el mismo interés durante un periodo menor a un año (60 días), se calculará de la siguiente forma:
Periodo: 60 días = 60/360 = 0,16
I = 1.000.000 * 0,08 * 60/360 = 13.333
Espero te ayude :3
We assume the composite figure is a cone of radius 10 inches and slant height 15 inches set atop a hemisphere of radius 10 inches.
The formula for the volume of a cone makes use of the height of the apex above the base, so we need to use the Pythagorean theorem to find that.
h = √((15 in)² - (10 in)²) = √115 in
The volume of the conical part of the figure is then
V = (1/3)Bh = (1/3)(π×(10 in)²×(√115 in) = (100π√115)/3 in³ ≈ 1122.994 in³
The volume of the hemispherical part of the figure is given by
V = (2/3)π×r³ = (2/3)π×(10 in)³ = 2000π/3 in³ ≈ 2094.395 in³
Then the total volume of the figure is
V = (volume of conical part) + (volume of hemispherical part)
V = (100π√115)/3 in³ + 2000π/3 in³
V = (100π/3)(20 + √115) in³
V ≈ 3217.39 in³