g(x) is basically transformed f(x). First, let's focus on f(x) graph. Notice how the graph has slope of 1 and intersect y-axis at (0,0).
Which means that our equation for f(x) is:

Now then we focus on g(x). g(x) is f(x+k). That means if f(x) = x then f(x+k) would mean substitute x = x+k in the equation.

Next, we want to find the value of k. In the slope-intercept form or y = mx+b where m = slope and b = y-intercept. Notice the g(x) graph and see that the graph intersects y-axis at (0,4). Therefore k = y-intercept = 4.

Answer
- g(x) = x+4
- Therefore the value of k is 4.
1a) False. A square is never a trapezoid. A trapezoid has only one pair of parallel sides while the other set of opposite sides are not parallel. Contrast this with a square which has 2 pairs of parallel opposite sides.
1b) False. A rhombus is only a rectangle when the figure is also a square. A square is essentially a rhombus and a rectangle at the same time. If you had a Venn Diagram, then the circle region "rectangle" and the circle region "rhombus" overlap to form the region for "square". If the statement said "sometimes" instead of "always", then the statement would be true.
1c) False. Any rhombus is a parallelogram. This can be proven by dividing up the rhombus into triangles, and then proving the triangles to be congruent (using SSS), then you use CPCTC to show that the alternate interior angles are congruent. Finally, this would lead to the pairs of opposite sides being parallel through the converse of the alternate interior angle theorem. Changing the "never" to "always" will make the original statement to be true. Keep in mind that not all parallelograms are a rhombus.
<span>Neil Armstrong weighed more on Earth than he did on the moon because the Earth has a greater </span>Gravitational Force.
Step-by-step explanation:
Area of Circle =
