Answer:
-2.5
Step-by-step explanation:
-30 + (-15) + (-20) + 55 = -10. Then you divide it by how many numbers there are (4). Which equals - 2.5. If this is wrong, then round up to -3.
Answer:
<u><em>x>2</em></u>
Step-by-step explanation:
<u><em>x3+3x2=7x+6</em></u>
<u><em>x3+3x2−(7x+6)=7x+6−(7x+6)</em></u>
<u><em>x3+3x2−7x−6=0</em></u>
<u><em>(x−2)(x2+5x+3)=0</em></u>
<u><em>x−2=0 or x2+5x+3=0</em></u>
<u><em>x=2 or x=−0.6972243622680054 or x=−4.302775637731995</em></u>
<u><em>x<−4.302776</em></u>
<u><em>−4.302776<x<−0.697224</em></u>
<u><em>−0.697224<x<2</em></u>
<u><em>x>2(Works in original inequality)</em></u>
Answers:
Vertical asymptote: x = 0
Horizontal asymptote: None
Slant asymptote: (1/3)x - 4
<u>Explanation:</u>
d(x) = 
= 
Discontinuities: (terms that cancel out from numerator and denominator):
Nothing cancels so there are NO discontinuities.
Vertical asymptote (denominator cannot equal zero):
3x ≠ 0
<u>÷3</u> <u>÷3 </u>
x ≠ 0
So asymptote is to be drawn at x = 0
Horizontal asymptote (evaluate degree of numerator and denominator):
degree of numerator (2) > degree of denominator (1)
so there is NO horizontal asymptote but slant (oblique) must be calculated.
Slant (Oblique) Asymptote (divide numerator by denominator):
- <u>(1/3)x - 4 </u>
- 3x) x² - 12x + 20
- <u>x² </u>
- -12x
- <u>-12x </u>
- 20 (stop! because there is no "x")
So, slant asymptote is to be drawn at (1/3)x - 4
0.7 is 10 times as much as 0.70