Answer:68.3 degrees
Step-by-step explanation:
The diagram of the triangle ABC is shown in the attached photo. We would determine the length of side AB. It is equal to a. We would apply the cosine rule which is expressed as follows
c^2 = a^2 + b^2 - 2abCos C
Looking at the triangle,
b = 75 miles
a = 80 miles.
Angle ACB = 180 - 42 = 138 degrees. Therefore
c^2 = 80^2 + 75^2 - 2 × 80 × 75Cos 138
c^2 = 6400 + 5625 - 12000Cos 138
c^2 = 6400 + 5625 - 12000 × -0.7431
c^2 = 12025 + 8917.2
c = √20942.2 = 144.7
To determine A, we will apply sine rule
a/SinA = b/SinB = c/SinC. Therefore,
80/SinA = 144.7/Sin 138
80Sin 138 = 144.7 SinA
SinA = 53.528/144.7 = 0.3699
A = 21.7 degrees
Therefore, theta = 90 - 21.7
= 68.3 degees
Answer:
50 1/3
Step-by-step explanation:
Step-by-step explanation:
I'm not sure what you mean by 'written method' but the sum is 2,654.

<u>Mona starts from 68th stone</u>
<u>She jumps</u><u> </u><u>23</u><u> </u><u>stones</u><u> </u><u>ahead</u><u> </u>
<u>Then</u><u> </u><u>she</u><u> </u><u>jumps</u><u> </u><u>28</u><u> </u><u>stones</u><u> </u><u>back</u>

<em>Her final position=?</em>




- To find how much stones she is ahead or back we will Subtract 63 from 68 which was her initial position.

So, Mona will be <em><u>5</u></em><em><u> </u></em><em><u>stones</u></em><em><u> </u></em><em><u>behind</u></em><em><u> </u></em><em><u>from</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>starting</u></em><em><u> </u></em><em><u>stone</u></em><em><u>.</u></em>
☯️Hence, Option C is correct
The slope form: y = mx + b
We have:
3x - 6y - 2 = 0 |add 6y to both sides
3x - 2 = 6y |divide both sides by 6
3x/6 - 2/6 = 6y/6
x/2 - 1/3 = y
y = 1/2 x - 1/3