Recall that a ⇒ b ≡ ¬a ∨ b.
• r ⇒ (p ∧ q) ≡ ¬r ∨ (p ∧ q)
In row C, q is false so p ∧ q false, and r is true so ¬r is false.
¬r ∨ (p ∧ q) ≡ false ∨ false ≡ false
• r ⇒ (p ∨ q) ≡ ¬r ∨ (p ∨ q) = p ∨ q ∨ ¬r
In each of rows A, C, and E, at least one of p or q is true, so
p ∨ q ∨ ¬r = true
• (q ∧ r) ⇒ p ≡ ¬(q ∧ r) ∨ p ≡ (¬q ∨ ¬ r) ∨ p = p ∨ ¬q ∨ ¬r
In row E, p is false and both q and r are true, so ¬q and ¬r are both false.
false ∨ false ∨ false = false
• (q ∨ r) ⇒ p ≡ ¬(q ∨ r) ∨ p ≡ (¬q ∧ ¬r) ∨ p
In row E, p is false and both q and r are true, so both ¬q and ¬r are false.
(¬q ∧ ¬r) ∨ p ≡ (false ∧ false) ∨ false ≡ false ∨ false ≡ false
Answer:
The answer is below
Step-by-step explanation:
Let x represent the profit made from sales and c(x) the commission based on sells. If the profit is less then $1000,they 21%, hence:
if x < 1000, c(x) = 0.21x
If the profit is less between $1000 and $1200,they 22.5%, hence:
if 1000 < x < 1200, c(x) = 0.225x
If the profit is greater than $1200,they 23.5%, hence:
if x > 1200, c(x) = 0.235x
Therefore the commission represented as a piecewise function is:

Answer:
32.33% probability of having at least 3 erros in an hour.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given time interval.
The mean number of errors is 2 per hour.
This means that 
(a) What is the probability of having at least 3 errors in an hour?
Either you have 2 or less errors in an hour, or we have at least 3 errors. The sum of the probabilities of these events is decimal 1. So

We want 
So

In which







32.33% probability of having at least 3 erros in an hour.
The answer to what is the measure of ∠acb is 34.7