To determine the mass plated, we use Faraday's Law of Electrolysis. We calculate as follows:
q = It
q = 8.70 (33.5) (60)
q = 17487 C
mass = 17487 C ( 1 mol e- / 96500 C) ( 1 mol / 2 mol e-) (107.9 g /mol)
mass = 9.78 g
Hope this helps.
The solution is:tan(θ) = opp / adj tan(θ) = y/x xtan(θ) = y
Find x:
x = y/tan(θ)
So x = 3/tan(π/6)
Perform implicit differentiation to get the equation:
dx/dt * tan(θ) + x * sec²(θ) * dθ/dt = dy/dt
Since altitude remains the same, dy/dt = 0. Now...
dx/dt * tan(π/6) + 3/tan(π/6) * sec²(π/4) * -π/4 = 0
changing the equation, will give us:
dx/dt = [3/tan(π/6) * sec²(π/6) * π/4} / tan(π/6) ≈ 12.83 km/min
D = <span>
2.4 g/cm3We learned this in my physics class as well.
</span><span><span>
p = m/v</span></span>
Where:
p = density
m = mass
V = volume
So to find the density you solve 36/16
=2.4
Hope this helped. Have a great day!
Answer:
The area under a velocity-time graph is the displacement. Velocity can be negative if an object is moving backwards. The displacement can also be negative. An area beneath the x-axis has a negative value.