Answer:
87.9%
Explanation:
Balanced Chemical Equation:
HCl + NaOH = NaCl + H2O
We are Given:
Mass of H2O = 9.17 g
Mass of HCl = 21.1 g
Mass of NaOH = 43.6 g
First, calculate the moles of both HCl and NaOH:
Moles of HCl: 21.1 g of HCl x 1 mole of HCl/36.46 g of HCl = 0.579 moles
Moles of NaOH: 43.6 g of NaOH x 1 mole of NaOH/40.00 g of NaOH = 1.09 moles
Here you calculate the mole of H2O from the moles of both HCl and NaOH using the balanced chemical equation:
Moles of H2O from the moles of HCl: 0.579 moles of HCl x 1 mole of H2O/1 mole of HCl = 0.579 moles
Moles of H2O from the moles of NaOH: 1.09 moles of HCl x 1 mole of H2O/1 mole of NaOH = 1.09 moles
From the calculations above, we can see that the limiting reagent is HCl because it produced the lower amount of moles of H2O. Therefore, we use 0.579 moles and NOT 1.09 moles to calculate the mass of H2O:
Mass of H2O: 0.579 moles of H2O x 18.02 g of H2O/1 mole of H2O = 10.43 g
% yield of H2O = actual yield/theoretical yield x 100= 9.17 g/10.43 g x 100 = 87.9%
C. Developing effective methods of food preservation
Explanation:
The development of effective methods of food preservation is a much more smaller and manageable problem that contributes to the complex problem.
The percentage of food rotting is not as a result of lack of an effective preservation technique as highlighted in the passage. It is due to the long distances of agricultural area from where the farms are located.
- To cut the loss, efficient and rapid transportation techniques needs to be put in place to carry the fruits and vegetables to the area where they are needed.
- This is the most complex problem that if solved can peg back food rot.
- Additional measures should be put in place to preserve the food.
Other options does not address the subject matter
learn more:
Preservation brainly.com/question/4853419
#learnwithBrainly
Lakes, oceans, glaciers, clouds, etc. It categorizes all forms of water on earth.
hydro = water
Not sure about 2 or 3 but I believe that for number 1 is B or claim 2!!