For this case we have the following system of equations:

From the first equation we clear "x":

We substitute in the second equation:

We apply distributive property:

We add similar terms:

We add 65 to both sides:

We divide between 22 on both sides:

We look for the value of the variable "x":

Thus, the solution of the system is:

ANswer:

Answer:
sin(A-B) = 24/25
Step-by-step explanation:
The trig identity for the differnce of angles tells you ...
sin(A -B) = sin(A)cos(B) -sin(B)cos(A)
We are given that sin(A) = 4/5 in quadrant II, so cos(A) = -√(1-(4/5)^2) = -3/5.
And we are given that cos(B) = 3/5 in quadrant I, so sin(B) = 4/5.
Then ...
sin(A-B) = (4/5)(3/5) -(4/5)(-3/5) = 12/25 + 12/25 = 24/25
The desired sine is 24/25.
Answer:
-28x(-1.6)
Step-by-step explanation:
combine like terms: -18x +(-10x) ---> <u>-28x</u>
3-4.6 ---> <u>-1.6</u>
Combine the leftover terms:
<u>-28x(-1.6)</u>