Answer:
I do think I can answer this
Answer: 3.19
Step-by-step explanation:
So to find the average I used a simple but pretty effective method
3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+3+8/26=3.1923
So the new average is 3.19
Answer:
a) N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
c) ∆N = -660 computers
Step-by-step explanation:
Since N(P) is a linear function
N(P) = mP + C
Where m is the slope and C is the intercept.
Case 1
N(1000) = 10000
10000 = 1000m + C ....1
Case 2
N(1700) = 5800
5800 = 1700m + C ....2
Subtracting equation 1 from 2
700m = 5800 - 10000
m = -4200/700
m = -6
Substituting m = -6 into eqn 1
10000 = (-6)1000 + C
C = 10000+ 6000 = 16000
N(P) = -6P + 16000
b) slope = -6 computers per dollar
That means the number of computer sold reduce by 6 per dollar increase in price.
Slope is the change in number of computer sold per unit Change in price.
c) since slope m = -6 computers per dollar
∆P = 110 dollars
∆N = m × ∆P
Substituting the values,
∆N = -6 computers/dollar × 110 dollars
∆N = -660 computers.
The number of computer sold reduce by 660 when the price increase by 110 dollars
The vertex of this parabola is at (3,-2). When the x-value is 4, the y-value is 3: (4,3) is a point on the parabola. Let's use the standard equation of a parabola in vertex form:
y-k = a(x-h)^2, where (h,k) is the vertex (here (3,-2)) and (x,y): (4,3) is another point on the parabola. Since (3,-2) is the lowest point of the parabola, and (4,3) is thus higher up, we know that the parabola opens up.
Substituting the given info into the equation y-k = a(x-h)^2, we get:
3-[-2] = a(4-3)^2, or 5 = a(1)^2. Thus, a = 5, and the equation of the parabola is
y+2 = 5(x-3)^2 The coefficient of the x^2 term is thus 5.
Answer:
adjust the equation so the line passes through the points