Answer:
look i need help on the smae thing so sorry
Step-by-step explanation:
The x-intercepts are: -0.5 and 2.
Answer:
C. cot theta
Step-by-step explanation:
(csc theta -cot theta )/(sec theta -1)
csc = 1/ sin
cot = cos / sin
sec = 1 / cos
Let x = theta
(1/ sin x -cos x / sin x )/(1/ cos x -1)
Getting a common denominator in the denominator and combining terms
(1- cos x)/ sinx / ( 1 - cos x) / cos x
(1- cosx) (1- cosx)
----------- ÷ ------------
sinx cos x
Copy dot flip
(1- cosx) cosx
----------- * ------------
sinx 1 -cos x
Cancel like terms
cos x / sin x
cos / sin = cot
cot x
cot theta
Answer:
Thus, the statement is False!
Step-by-step explanation:
When the domain of a function has an infinite number of values, the range may not always have an infinite number of values.
For example:
Considering a function

Its domain is the set of all real numbers because it has an infinite number of possible domain values.
But, its range is a single number which is 5. Because the range of a constant function is a constant number.
Therefore, the statement ''When the domain of a function has an infinite number of values, the range always has an infinite number of values'' is FALSE.
Thus, the statement is False!
<span>f(k) = k2 + 2k + 1 = (k+1)^2
The range is what the function gives to you f(k)=25=5^2 or (-5)^2
f(k)=64=8^2 or (-8)^2
You need to find the k values for these boundary values to find the domain.
Good luck :)</span>