Answer:
A) 185.6 J
B) 9.396 x 10^14 J
C) 4x10^7 m/s
D) 20 m
E) 9.09x10^-8 sec
F) 9.09x10^-8 sec
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
Newton's Cradle experiment perfectly demonstrates the law of conservation of momentum which states that in a closed system, momentum before the collision is equal to momentum after the collision of the system.
As the first ball swings in the air, it gains momentum. When it strikes the second ball, it loses momentum and second ball gains equal amount of momentum. The second ball transfers the momentum to third, then fourth and till the last. The last ball when gains the same momentum swings up in the air. This continues. This experiment is done in drag free condition. This means there is no loss of momentum or opposing forces present.
If the net force on object A is 5 N and the net force on object B is 10 N, then object B will accelerate more quickly than object A provided the mass of both objects are same.
Answer: Option C
<u>Explanation:
</u>
According to Newton’s second law of motion, any external force applied on an object is directly proportional to the mass and acceleration of the object. In order to state this law in terms of acceleration, it is stated that acceleration exhibited by any object is directly proportional to the net force applied on the object and inversely proportional to the mass of the object as shown below:

So if two objects A and B are identical which means they have same mass, then the acceleration attained by the object will be directly proportionate to the net forces exerted on the objects only.
Thus if the force applied is more for one object, then the object will be exhibiting more acceleration compared to the other one. So as object B is experiencing a net force of 10 N which is greater than the net force experiences by object A, then the object B will be accelerating more quickly compared to the object A's acceleration.
It would change into a gas.