Answer:
The formula for density is d = M/V, where d is density, M is mass, and V is volume. Density is commonly expressed in units of grams per cubic centimetre.
Explanation:
have a beautiful day ahead
Answer:
Leading your people into the right direction, and always knowing what is best for you and your people.
Explanation:
Answer:
the correct answer is C v = 60 cm / s
Explanation:
The speed of a wave is related to the frequency and the wavelength
v = λ f
They indicate that the object performs 20 oscillations every second, this is the frequency
f = 20 Hz
the wavelength is the distance until the wave repeats, the distance between two consecutive peaks corresponds to the wavelength
λ = 3 cm = 0.03 m
let's calculate
v = 20 0.03
v = 0.6 m / s
v = 60 cm / s
the correct answer is C
Answer:
v₃ = 9.62[m/s]
Explanation:
To solve this type of problem we must use the principle of conservation of linear momentum, which tells us that the momentum is equal to the product of mass by velocity.
We must analyze the moment when the astronaut launches the toolkit, the before and after. In order to return to the ship, the astronaut must launch the toolkit in the opposite direction to the movement.
Let's take the leftward movement as negative, which is when the astronaut moves away from the ship, and rightward as positive, which is when he approaches the ship.
In this way, we can construct the following equation.

where:
m₁ = mass of the astronaut = 157 [kg]
m₂ = mass of the toolkit = 5 [kg]
v₁ = velocity combined of the astronaut and the toolkit before throwing the toolkit = 0.2 [m/s]
v₂ = velocity for returning back to the ship after throwing the toolkit [m/s]
v₃ = velocity at which the toolkit should be thrown [m/s]
Now replacing:
![-(157+5)*0.2=(157*0.1)-(5*v_{3})\\(5*v_{3})= 15.7+32.4\\v_{3}=9.62[m/s]](https://tex.z-dn.net/?f=-%28157%2B5%29%2A0.2%3D%28157%2A0.1%29-%285%2Av_%7B3%7D%29%5C%5C%285%2Av_%7B3%7D%29%3D%2015.7%2B32.4%5C%5Cv_%7B3%7D%3D9.62%5Bm%2Fs%5D)