Answer:
The value is 
Explanation:
From the question we are told that
The velocity of the each of the three cars is 
The velocity of the fourth car is 
The initial velocity of the fifth car 
Generally from the law of momentum conservation we have that
![m_1 u_1 + m_2 u_2 + m_3 u_3 +m_4u_4 + m_5u_5 = [m_1 + m_2 + m_3 +m_4+ m_5]v](https://tex.z-dn.net/?f=m_1%20u_1%20%2B%20m_2%20u_2%20%2B%20m_3%20u_3%20%2Bm_4u_4%20%2B%20m_5u_5%20%3D%20%20%5Bm_1%20%20%20%2B%20m_2%20%2B%20m_3%20%2Bm_4%2B%20m_5%5Dv)
Given that the cars are identical then their mass will be the same
i.e

=> ![[u_1 + u_2 + u_3 +u_4 + u_5]m = 5mv](https://tex.z-dn.net/?f=%5Bu_1%20%2B%20u_2%20%2B%20%20u_3%20%2Bu_4%20%2B%20u_5%5Dm%20%3D%20%205mv)
=> 
= > 
Answer:
R₁ = 0.126 m
Explanation:
Let's use the definition of intensity which is the power per unit area
I = P / A
the generated power is constant
P = I A
power is
P = E / t
if we perform the calculations for a given time, the wave energy is
E = q V
we substitute
P =
we can write this equation for two points, point 1 the antenna and point 2 the receiver
V₁A₁ = V₂A₂
A₁ =
A₁ = 0.1 10⁻³ 5 10⁻⁴ /V₁
A₁ = 5 10⁻⁸ /V₁
In general, the electric field on the antenna is very small on the order of micro volts, suppose V₁ = 1 10⁻⁶ V
let's calculate
A₁ = 5 10⁻⁸ / 1 10⁻⁶
A₁ = 5 10⁻² m²
the area of a circle is
A = π r²
we substitute
π R1₁²= 5 10⁻²
R₁ =
R₁ = 0.126 m
When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>
The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.
<h3>What is the energy transfer in a pendulum?</h3>
As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.
So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
The amount of energy released by the earthquake in joules is 4.4×10^12 J.
Explanation:
As, we have given the magnitude,
M = 2/3 Log E/Eo
where E is the amount of energy released by the earthquake in joules and Eo=10^4.4 is the assigned minimal measure released by an earthquake.
As, the magnitude is given which is 5.5 then put it in the above equation,
5.5 = 2/3 Log E/Eo
Log E/Eo = 5.5×3 / 2
Log E/Eo = 8.25
Now, we will find the amount of energy released by an earthquake:
Log E/Eo = 8.25
Taking antilog,
E/Eo = 10^8.25
But Eo is given which is Eo = 10^4.4
E/(10^4.4) = 10^8.25
E = 10^8.25 × 10^4.4
E = 4.4×10^12 J.