Answer:
,
,
,
, 
Explanation:
Empirical formula of the compound is the simplest ratio of elements present in the compound.
Empirical formula of compounds of chlorine with oxygen is as follows:
Compounds in which oxidation state of Cl is +1

Compounds in which oxidation state of Cl is +3

Compounds in which oxidation state of Cl is +4

Compounds in which oxidation state of Cl is +6

Compounds in which oxidation state of Cl is +7

Answer:
The equilbrium constant is 179.6
Explanation:
To solve this question we can use the equation:
ΔG = -RTlnK
<em>Where ΔG is Gibbs free energy = 12.86kJ/mol</em>
<em>R is gas constant = 8.314x10⁻³kJ/molK</em>
<em>T is absolute temperature = 298K</em>
<em>And K is equilibrium constant.</em>
Replacing:
12.86kJ/mol = -8.314x10⁻³kJ/molK*298K lnK
5.19 = lnK
e^5.19 = K
179.6 = K
<h3>The equilbrium constant is 179.6</h3>
A homogenous mixture is uniform and thus hard to recognize as a mixture. An example is water.
Answer:
[Ag⁺] = 5.0x10⁻¹⁴M
Explanation:
The product solubility constant, Ksp, of the insoluble salts PbI₂ and AgI is defined as follows:
Ksp(PbI₂) = [Pb²⁺] [I⁻]² = 1.4x10⁻⁸
Ksp(AgI) = [Ag⁺] [I⁻] = 8.3x10⁻¹⁷
The PbI₂ <em>just begin to precipitate when the product [Pb²⁺] [I⁻]² = 1.4x10⁻⁸</em>
<em />
As the initial [Pb²⁺] = 0.0050M:
[Pb²⁺] [I⁻]² = 1.4x10⁻⁸
[0.0050] [I⁻]² = 1.4x10⁻⁸
[I⁻]² = 1.4x10⁻⁸ / 0.0050
[I⁻]² = 2.8x10⁻⁶
<h3>[I⁻] = 1.67x10⁻³</h3><h3 />
So, as the [I⁻] concentration is also in the expression of Ksp of AgI and you know concentration in solution of I⁻ = 1.67x10⁻³M:
[Ag⁺] [I⁻] = 8.3x10⁻¹⁷
[Ag⁺] [1.67x10⁻³] = 8.3x10⁻¹⁷
<h3>[Ag⁺] = 5.0x10⁻¹⁴M</h3>