Answer:
Step-by-step explanation:
When two parallel lines are crossed by another line, adjacent angles will always sum to 180 degrees.
x+114=180
x=66 degrees
Answer:
1) f(g(0)) = 0
2) g(f(2)) = 2
3) g(g(0)) = 8
Step-by-step explanation:
Here, the given functions are:
g(x) = 3 x +2 and f(x)= (x-2)/3
1. Now, f(g(x)) = f(3x+2)
Also, f(3x+2) = (3x+2 -2) /3 = x
So, f(g(x)) = x
⇒ f(g(0)) = 0
2. g(f(x)) = g((x-2)/3) = 3((x-2)/3) +2
or, g(f(x)) = x
⇒ g(f(2)) = 3((2)-2/3) +2 = 2
or, g(f(2)) = 2
3. g(g(0)= g( 3 (0) +2) = g(2)
Now, g(2) = 3(2) + 2 = 6 + 2 = 8
or, g(g(0)) = 8
Answer: If we define 2:00pm as our 0 in time; then:
at t= 0. the velocity is 30 mi/h.
then at t = 10m (or 1/6 hours) the velocity is 50mi/h
Then, if we think in the "mean acceleration" as the slope between the two velocities, we can find the slope as:
a= (y2 - y1)/(x2 - x1) = (50 mi/h - 30 mi/h)/(1/6h - 0h) = 20*6mi/(h*h) = 120mi/
Now, this is the slope of the mean acceleration between t= 0h and t = 1/6h, then we can use the mean value theorem; who says that if F is a differentiable function on the interval (a,b), then exist at least one point c between a and b where F'(c) = (F(b) - F(a))/(b - a)
So if v is differentiable, then there is a time T between 0h and 1/6h where v(T) = 120mi/
1 3/9 but if reduce to lowest term than 1 1/3
Because Philip is conducting a survey that pertains to the weight of the cows, he needs statistics that directly relate to weight.
The cows being overweight doesn't give Philip concrete information on the weight of the cows, as it doesn't give the amount of pounds a cow weighs. Average age has nothing to do with weight, and normal body weight doesn't give concrete information on weight.
The answer is "<span>What is the weight of each cow on the farm?".</span>