D (5, -5)
E (2, -7)
F (6, -1)
G (10, -8)
If you need an explanation as to how I did, you just add 4 to the x coordinate and subtract 5 from the y coordinate since going down is negative.
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the following Sum to Product Identities:

<u>Proof LHS → RHS</u>





![\text{Sum to Product:}\qquad \dfrac{\cos 10\bigg[2\cos \bigg(\dfrac{15+25}{2}\bigg)\sin \bigg(\dfrac{15-25}{2}\bigg)\bigg]}{\cos 20\bigg[-2\sin \bigg(\dfrac{15+5}{2}\bigg)\sin \bigg(\dfrac{15-5}{2}\bigg)\bigg]}](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B15%2B25%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-25%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D%7B%5Ccos%2020%5Cbigg%5B-2%5Csin%20%5Cbigg%28%5Cdfrac%7B15%2B5%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-5%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D)
![\text{Simplify:}\qquad \qquad \dfrac{\cos 10[2\cos 20\sin (-5)]}{\cos 20[-2\sin 10\sin 5]}\\\\\\.\qquad \qquad \qquad =\dfrac{-2\cos10 \cos 20 \sin 5}{-2\sin 10 \cos 20 \sin 5}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 10}{\sin 10}\\\\\\.\qquad \qquad \qquad =\cot 10](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5B2%5Ccos%2020%5Csin%20%28-5%29%5D%7D%7B%5Ccos%2020%5B-2%5Csin%2010%5Csin%205%5D%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B-2%5Ccos10%20%5Ccos%2020%20%5Csin%205%7D%7B-2%5Csin%2010%20%5Ccos%2020%20%5Csin%205%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B%5Ccos%2010%7D%7B%5Csin%2010%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Ccot%2010)
LHS = RHS: cot 10 = cot 10 
Answer:
2/5 0
Step-by-step explanation:
Answer:
7 yards.
Step-by-step explanation:
Assuming both Richard (1,3) and Marlon (-6,3) are on the same altitude/y-axis, we can simply do a addition/subtraction equation to solve this problem. Using both x-axis coordinates, we setup -6 - 1. In turn, we get -7, since one cannot throw something in negative yards, we turn it into a positive. Finally, we get 7 yards in total.
This is the answer to your question.<span />