1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nat2105 [25]
2 years ago
12

I need help with this

Mathematics
2 answers:
natima [27]2 years ago
8 0

Answer:

D

Step-by-step explanation:

Simora [160]2 years ago
4 0
Maybe try d? i really don’t know
You might be interested in
Cual es la mitad de 1/4 kg de miel​
Evgesh-ka [11]

Answer:

1/8 Kg de miel.

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
PLZ PLZ PLZZZZZZ HELP ME IMMEDIATLEY
earnstyle [38]

Answer:

×=64

I HOPE IT CAN HELP:(

8 0
2 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
What is the value of the expression shown when x = 5?
sergey [27]
3(2(5)+4)-5
3(10+4)-5
30+12-5
42-5
37
4 0
3 years ago
What is the longest line segment that can be drawn in a right rectangular prism that is 14cm​ long, 13cm​ wide, and 11cm​ tall?
vlabodo [156]

The longest line segment that can be drawn in a right rectangular prism that is 14cm long, 13cm wide and 11cm tall is 19.1cm.

<h3>What is a right rectangular prism?</h3>

A right rectangular prism is a three dimensional solid shape formed by 6 rectangles.

it is also called the cuboid.

Analysis:

The diagonal of the face of the prism with dimensions 14cm long and 13cm wide is the longest line segment that can be drawn.

Since rectangles have 90° on each vertex, we can use Pythagoras theorem to calculate for the length of the diagonal.

(diagonal)^{2} = (length)^{2} + (width)^{2}

(diagonal)^{2} = (14)^{2} + (13)^{2}

                 = 196 + 169 = 365

 (diagonal)^{2} = 365

diagonal = \sqrt{365} = 19.1cm

In conclusion, the length of the longest diameter is 19.1cm

Learn more about Right rectangular prism: brainly.com/question/3317747

#SPJ1

               

4 0
2 years ago
Other questions:
  • A firefighter places a 29 feet ladder, so that the base of the ladder is 21 feet from the wall. What is the height at which the
    13·1 answer
  • Write 10 5/12 as an equivalent improper fraction.
    10·1 answer
  • PLEASE HELP!!! WORTH 3 GRADES
    15·2 answers
  • Find the area of a circle with a circumfrence of 53.41 inches
    13·2 answers
  • I don’t even know. I really need help with this question.
    15·1 answer
  • 12. The ratio of z and 2 is<br> represented as...<br> a. 32<br> b. 2/2<br> c. 22<br> d. 2+2
    5·1 answer
  • Pls help me with this I'm not great with functions thx
    9·2 answers
  • Which of the following statements would not translate to the equation 14 ÷ x = -7?
    11·1 answer
  • Please help me ASAP please
    6·2 answers
  • Help me out please! Anybody? I’m so confused
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!