1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
3 years ago
15

find the centre and radius of the following Cycles 9 x square + 9 y square +27 x + 12 y + 19 equals 0​

Mathematics
1 answer:
Citrus2011 [14]3 years ago
6 0

Answer:

Radius: r =\frac{\sqrt {21}}{6}

Center = (-\frac{3}{2}, -\frac{2}{3})

Step-by-step explanation:

Given

9x^2 + 9y^2 + 27x + 12y + 19 = 0

Solving (a): The radius of the circle

First, we express the equation as:

(x - h)^2 + (y - k)^2 = r^2

Where

r = radius

(h,k) =center

So, we have:

9x^2 + 9y^2 + 27x + 12y + 19 = 0

Divide through by 9

x^2 + y^2 + 3x + \frac{12}{9}y + \frac{19}{9} = 0

Rewrite as:

x^2  + 3x + y^2+ \frac{12}{9}y =- \frac{19}{9}

Group the expression into 2

[x^2  + 3x] + [y^2+ \frac{12}{9}y] =- \frac{19}{9}

[x^2  + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}

Next, we complete the square on each group.

For [x^2  + 3x]

1: Divide the coefficient\ of\ x\ by\ 2

2: Take the square\ of\ the\ division

3: Add this square\ to\ both\ sides\ of\ the\ equation.

So, we have:

[x^2  + 3x] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}

[x^2  + 3x + (\frac{3}{2})^2] + [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2

Factorize

[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y] =- \frac{19}{9}+ (\frac{3}{2})^2

Apply the same to y

[x + \frac{3}{2}]^2+ [y^2+ \frac{4}{3}y +(\frac{4}{6})^2 ] =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ (\frac{3}{2})^2 +(\frac{4}{6})^2

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =- \frac{19}{9}+ \frac{9}{4} +\frac{16}{36}

Add the fractions

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{-19 * 4 + 9 * 9 + 16 * 1}{36}

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{21}{36}

[x + \frac{3}{2}]^2+ [y +\frac{4}{6}]^2 =\frac{7}{12}

[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}

Recall that:

(x - h)^2 + (y - k)^2 = r^2

By comparison:

r^2 =\frac{7}{12}

Take square roots of both sides

r =\sqrt{\frac{7}{12}}

Split

r =\frac{\sqrt 7}{\sqrt 12}

Rationalize

r =\frac{\sqrt 7*\sqrt 12}{\sqrt 12*\sqrt 12}

r =\frac{\sqrt {84}}{12}

r =\frac{\sqrt {4*21}}{12}

r =\frac{2\sqrt {21}}{12}

r =\frac{\sqrt {21}}{6}

Solving (b): The center

Recall that:

(x - h)^2 + (y - k)^2 = r^2

Where

r = radius

(h,k) =center

From:

[x + \frac{3}{2}]^2+ [y +\frac{2}{3}]^2 =\frac{7}{12}

-h = \frac{3}{2} and -k = \frac{2}{3}

Solve for h and k

h = -\frac{3}{2} and k = -\frac{2}{3}

Hence, the center is:

Center = (-\frac{3}{2}, -\frac{2}{3})

You might be interested in
Gilyann got a new puppy for her birthday. She went to the pet store to buy what she needed for the puppy: a food dish for $7.95,
Elina [12.6K]

Answer:

76.48

Step-by-step explanation:

5 0
3 years ago
5 1/4* (-4 2/3)<br> Solve
leonid [27]

Answer:

-10/3, -3  1/3, or -3.33333333...........

Step-by-step explanation:

First, just multiply the whole numbers by the fractions and then multiply those tow numbers by each other. Hope this helped!!

6 0
3 years ago
Read 2 more answers
F(n)=2n+5<br> g(n)=n²-1<br> Find f(-3) ⋅ g(-3)
kirill115 [55]

Answer:

use symbolab

Step-by-step explanation:

8 0
3 years ago
Helwp please thank uuu!
Minchanka [31]

Step-by-step explanation:

<h3><em><u>Given</u></em><em><u>,</u></em></h3>
  • GRAM is a parallelogram
  • m<GMA = 66°
  • m<GRP = 32°
  • m<PAM = 41°
<h3><em><u>Solutions</u></em><em><u>:</u></em></h3>

i) <em>Since</em><em>,</em>

Angles on the same side of a transversal in a parallelogram, there sum is 180° so,

<RGM + <GMA = 180°

=> <RGM = 180° - <GMA

=> <RGM = 180° - 66°

=> <em><u><RGM = </u></em><em><u>114</u></em><em><u>°</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

ii) <em>Since</em><em>,</em>

Opposite angles of a diagonal as a transversal (here RM) are equal so,

<em><GRP = <PMA = 32°</em>

As we have <GMA = 66° so,

=> <GMP = <GMA - <PMA

= 66° - 32°

=> <em><u><</u></em><em><u>GMP</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>34</u></em><em><u>°</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

iii) <em>Since</em><em>,</em>

Opposite angles of a parallelogram are equal so,

<em><</em><em>RGM</em><em> = <</em><em>RAM</em><em> = </em><em>114</em><em>°</em>

As we have <PAM = 41° so,

=> <GAR = <RAM - <PAM

= 114° - 41°

=> <em><u><</u></em><em><u>GAR</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>73</u></em><em><u>°</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

iv) <em>Since</em><em>,</em>

We got <PMA = 32° and <PAM = 41°, so by angle sum property of a triangle PMA,

=> <MPA = 180° - 32° - 41°

=> <em><u><</u></em><em><u>MPA</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>107</u></em><em><u>°</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>

7 0
2 years ago
Below, five systems of linear equations have been put in reduced row echelon form. Identify how many solutions each one has, and
vesna_86 [32]
Broken Calculator checkkkkkkk
8 0
3 years ago
Other questions:
  • You commute to work a distance of 40 miles and return on the same route at the end of the day. Your average rate on the return t
    10·1 answer
  • Sam opened a money-market account that pays 3% simple interest. He started the account with $7,000 and made no further deposits.
    11·1 answer
  • What is the solution to the system of equations? y=2x 6 3x-y=6
    5·1 answer
  • Someone plz help i need a answer
    10·1 answer
  • Justin had 5 dogs he gave his friend 4 How many dogs dose justin have now
    6·1 answer
  • Any idea ? I need help
    15·2 answers
  • Solve please. *Picture Included*
    15·1 answer
  • the main sailboat has the dimensions shown in figure at the right . what is the height of the main sail? Then round to the neare
    12·1 answer
  • Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
    10·1 answer
  • I need help with my math.the problem is in the picture below.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!