Answer:
The quadratic polynomial with integer coefficients is
.
Step-by-step explanation:
Statement is incorrectly written. Correct form is described below:
<em>Find a quadratic polynomial with integer coefficients which has the following real zeros: </em>
<em>. </em>
Let be
and
roots of the quadratic function. By Algebra we know that:
(1)
Then, the quadratic polynomial is:


The quadratic polynomial with integer coefficients is
.
Answer:
(9, 5) or (0, 14)
Step-by-step explanation:
4+2+3+2=9
<em><u>Step</u></em><em><u>•</u></em><em><u>BY</u></em><em><u>•</u></em><em><u>Step</u></em><em><u> </u></em><em><u>Explanation</u></em><em><u>~</u></em><em><u>|</u></em>
<em><u> </u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u>♡</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em>
y=1.50
x=0.50
¹
1.50
1.59
______+
3.00
0.50
_____+
<em>3.50</em>
<h2>
<em><u>Answer</u></em><em><u>:</u></em><em><u>♡</u></em><em><u>~</u></em></h2>
<em><u>3.50</u></em>
<em><u>HOPE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>HELPSS</u></em>
It should be B I know how to do it
Relations are ordered pair sets (x,y) mapping a value to another value
the set of 1st components is called the domain
the set of 2nd components is called the range