Answer:
See below
Step-by-step explanation:
It has something to do with the<em> </em><u><em>Weierstrass substitution</em></u>, where we have

First, consider the double angle formula for tangent:

Therefore,

Once the double angle identity for sine is

we know
, but sure, we can derive this formula considering the double angle identity

Recall

Thus,
Similarly for cosine, consider the double angle identity
Thus,

Hence, we showed 
======================================================
![5\cos(x) =12\sin(x) +3, x \in [0, 2\pi ]](https://tex.z-dn.net/?f=5%5Ccos%28x%29%20%3D12%5Csin%28x%29%20%2B3%2C%20x%20%5Cin%20%5B0%2C%202%5Cpi%20%5D)
Solving





Just note that

and
is not defined for 
It is 9 degrees because at 6am the temperature was -12 degrees and at 10am the temperature was -3 degrees.
I believe the correct answer to your problem is C , you’re welcome
The range is how long the graph extends vertically. So, the lowest value is -9 (since the graph extends down until -9) and the highest value is 9 (since the graph extends up until 9). The lowest value goes in the first box and the highest value goes in the second box. The range is:
-9 ≤ <em>g</em>(<em>t </em>) ≤9