Answer:
<em>Here</em><em> </em><em>is</em><em> </em><em>your</em><em> </em><em>answer</em><em> </em>
Step-by-step explanation:
<em>PLEASE</em><em> </em><em>THANK</em><em>,</em><em> </em><em>RATE</em><em> </em><em>AND</em><em> </em><em>FOLLOW</em><em> </em><em>ME</em><em>,</em>
<em>AND</em><em> </em><em>PLEASE</em><em> </em><em>MARK</em><em> </em><em>ME</em><em> </em><em>AS</em><em> </em><em>"</em><em>BRAINLIEST</em><em>"</em><em> </em><em>ANSWER</em><em> </em>
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPS</em><em> </em><em>YOU</em><em> </em>
theta is in the fourth quadrant where the cosine is positive.
the third side in the triangle = sqrt (4 - 2) = sqrt2
So sin theta = -sqrt2/2 = Second choice (negative because sine is negative in 4th quadrant)
tan theta = - sqrt2 / sqrt2 = -1
The answer for the first slot is Alternate Interior Angles Theorem
Angle B and angle G are inside the "train tracks" formed by AB and GH. They are on opposite sides of the transversal line BG.
Along a similar line of reasoning, the answer for the second slot is Alternate Exterior Angles Theorem
The two parallel lines in question are AC and FH. The transversal line is FC. Angles ACB and HFG are on the exterior of the "train tracks" formed by the parallel lines.
Taking over his thoughts is the answer