Complete Question
Suppose a NASCAR race car rounds one end of the Martinsville Speedway. This end of the track is a turn with a radius of approximately 57.0 m . If the track is completely flat and the race car is traveling at a constant 30.5 m/s (about 68 mph ) around the turn.
Required:
a. What is the race car's centripetal (radial) acceleration?
b. What is the force responsible for the centripetal acceleration in this case?
O normal
O gravity
O friction
O weight
Answer:
question a

question b
correct option is option 3
Explanation:
From the question we are told that
The radius is 
The constant speed at which the race car is travelling is 
Generally from the question we are told that the track is completely flat so the only force pulling the car to the middle is the frictional force hence the centripetal force is due to the frictional force
Generally the centripetal acceleration is mathematically represented as

=> 
=> 
We know, I = F.Δt
As Δt is increased to 4 times, then, F would decrease to 4 times, in order to keep that impulse constant.
In short, Your force will change to 1/4th of it's initial value
Hope this helps!
Answer:
Electric switch is commonly known as the key of an electric circuit.
Answer: <u><em>C. Steel</em></u>
Explanation: <em><u>When a sound wave travels through a solid body consisting</u></em>
<em><u /></em>
<em><u>of an elastic material, the velocity of the wave is relatively</u></em>
<em><u /></em>
<em><u>high. For instance, the velocity of a sound wave traveling</u></em>
<em><u /></em>
<em><u>through steel (which is almost perfectly elastic) is about</u></em>
<em><u /></em>
<em><u>5,060 meters per second. On the other hand, the velocity</u></em>
<em><u /></em>
<em><u>of a sound wave traveling through an inelastic solid is</u></em>
<em><u /></em>
<em><u>relatively low. So, for example, the velocity of a sound wave</u></em>
<em><u /></em>
<em><u>traveling through lead (which is inelastic) is approximately</u></em>
<em><u /></em>
<em><u>1,402 meters per second.</u></em>
<em><u /></em>
<u><em /></u>