Answer:
Below
Step-by-step explanation:
● cos O = 2/3
We khow that:
● cos^2(O) + sin^2(O) =1
So : sin^2 (O)= 1-cos^2(O)
● sin^2(O) = 1 -(2/3)^2 = 1-4/9 = 9/9-4/9 = 5/9
● sin O = √(5)/3 or sin O = -√(5)/3
So we deduce that tan O will have two values since we don't khow the size of O.
■■■■■■■■■■■■■■■■■■■■■■■■■
●Tan (O) = sin(O)/cos(O)
● tan (O) = (√(5)/3)÷(2/3) or tan(O) = (-√(5)/3)÷(2/3)
● tan (O) = √(5)/2 or tan(O) = -√(5)/2
(n + 7)2 = n - 1
2n +14 = n - 1
2n - n +14 = n - n - 1
n + 14 -14 = -1 - 14
n = -15
(-15 + 7)2 = -15 - 1
(-8)2 = -16
-16 = -16
The given data is
t, h: 0 2 4 6 8 10
r(t), L/h: 8.6 7.9 6.8 6.4 5.7 5.3
The lower and upper estimates for the total amount that leaked may be computed as the Left and Right Riemann sums.
The shape of the graph of r versus will determine which of the two sums yields an upper or lower sum.
The plot of the graph is shown below.
The Left Riemann sum is
Sl = 2*(8.6+7.9+6.8+6.4+5.7) = 70.8 L
The Right Riemann sum is
Sr = 2*(7.9+6.8+6.4+5.7+5.3) = 64.2 L
Answer:
The lower estimate for oil leakage is 64.2 L
The upper estimate for oil leakage is 70.8 L
Answer:
no 8 is 90° and no 9 is two
Step-by-step explanation:
90° and two circles can pass through a given point