Answer:
Potassium iodide increases the decomposition rate of hydrogen peroxide.
Explanation:
Potassium iodide increases the decomposition rate of hydrogen peroxide because potassium iodide act as a catalyst. A catalyst speed up the process of chemical reaction without reacting with the molecules present in reaction. If the potassium iodide is not present as a catalyst for the decomposition of hydrogen peroxide then the decomposition of hydrogen peroxide takes too much time because the catalyst is absent that speed up the reaction.
The complete question is as follows: Which statement describes the way in which energy moves between a system reacting substances in the surroundings.
A) molecule Collisions transfer thermal energy between the system and its surroundings
B) The thermal energy of the system and it’s surroundings increase
C) The potential energy of the system and it’s surroundings increases
D) molecular collisions create energy that is then released into the surroundings
Answer: The statement, molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
Explanation:
When there will occur an increase in kinetic energy of molecules then there will occur more number of collisions.
When kinetic energy between these molecules tends to decrease then they will release heat energy into their surroundings.
As a result, it means that molecule collisions transfer thermal energy between the system and its surroundings.
Thus, we can conclude that the statement molecule Collisions transfer thermal energy between the system and its surroundings describes the way in which energy moves between a system reacting substances in the surroundings.
The answer will be (4) HI because the greater the difference of the bonds in electronegativity, the more polar a bond is.
coefficient: they balance the chemical equation you have to make sure the number is as small as it can. It is also used to convert different compounds to compounds or quantities to quantities.