There are many properties to substances.
I'll list some examples below:
- Mass
- Volume
- Density
- Conductivity
- Malleability
- Boiling point
- Melting point
- Heat capacity
Hope this helps! :3
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %
The answer is electrical energy
The molecules of hydrogen gas that are formed is when 48.7 g of sodium are added to water is 6.375 x 10²³ molecules
<u><em>calculation</em></u>
2 Na +2H₂O → 2 NaOH +H₂
Step 1: find the moles of sodium (Na)
moles =mass÷ molar mass
from periodic table the molar mass of Na = 23 g/mol
moles= 48.7 g÷ 23 g/mol =2.117 moles
Step 2:use the mole ratio to determine the moles of H₂
from given equation Na:H₂ is 2:1
therefore the moles of H₂ = 2.117 moles x 1/2=1.059 moles
Step 3: find the molecules of H₂ using the Avogadro's law
According to Avogadro's law 1 mole = 6.02 x 10²³ molecules
1.059 moles = ? molecules
by cross multiplication
= [(1.059 moles x 6.02 x10²³ molecules) / 1 mole] =6.375 x 10²³ molecules